skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ahn, Seongjin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We use the available transportmeasurements in the literature to develop a dataset for the likely amount of disorder in semiconductor (InAs and InSb) materials which are used in fabricating the superconductor-semiconductor nanowire samples in the experimental search for Majorana zero modes. Using the estimated disorder in direct Majorana simulations, we conclude that the current level of disorder in semiconductor Majorana nanowires is at least an order of magnitude higher than that necessary for the emergence of topological Majorana zero modes. In agreement with existing results, we find that our estimated disorder leads to the occasional emergence of trivial zero modes, which can be post-selected and then further fine-tuned by varying system parameters (e.g., tunnel barrier), leading to trivial zero-bias conductance peaks in tunneling spectroscopy with ∼2e2/h magnitude. Most calculated tunnel spectra in these disordered systems, however, manifest essentially no significant features, which is also consistent with the current experimental status, where zero-bias peaks are found only occasionally in some samples under careful fine-tuning. 
    more » « less